

WATER QUALITY REPORT 2021

Village of Midlothian

As part of *The Safe Water Drinking Act of 1996*, municipalities are required to provide their residents with an annual **Consumer Confidence Report**. Attached is the Village of Midlothian's report. It summarizes the quality of water delivered to you during the **2021 calendar year**. We hope you are satisfied with the quality and reliability of the drinking water you receive on a daily basis. It is something the public tends to take for granted, but rest assured we work very hard at it, every day of the year.

The Village of Midlothian purchases water from the City of Chicago, which uses Lake Michigan as its source. The following pages are water quality data sheets for both the Village and the City of Chicago. This information is given in an effort to keep our residents informed and educated. Some of the content is mandatory language and can be confusing. The Village of Midlothian had no violations during 2021. If you have any questions feel free to call Joe Sparrey, Superintendent of Public Works at (708) 389-9658. Mr. Sparrey is also available at Village Board meetings, which are scheduled the second and fourth Wednesday of every month.

You should be aware that drinking water, **including** bottled water may reasonably be expected to contain small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information can be obtained by calling the USEPA's **Safe Drinking Water Hotline at 1-800-426-4791**.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline (1-800-426-4791). In order to ensure that tap water is safe to drink, USEPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

The Village of Midlothian has complied with every standard set forth by USEPA and the State of Illinois.

Consumer Confidence Report

Annual Drinking Water Quality Report

MIDLOTHIAN

IL0311920

Annual Water Quality Report for the period of **January 1 to December 31, 2021**

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The source of drinking water used by MIDLOTHIAN is Purchased Surface Water

For more information regarding this report contact:

Name Joseph Sparrey, PW Superintendent

Phone 708-389-9658

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo o hable con alguien que lo entienda bien.

Source of Drinking Water	
<p>The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.</p> <p>Contaminants that may be present in source water include:</p> <ul style="list-style-type: none">- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.	<p>Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.</p> <p>In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.</p> <p>Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).</p> <p>If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.</p>

SOURCE WATER INFORMATION

Source Water Name
CC 01 MASTER METER

F IL 0310230 (MIDMARK)

Type of Water
SW

location
AT MAIN P.S.

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by the Village Hall or call our Public Works Department at 708-389-9658. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at <http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl>.

Source of Water: City of CHICAGO. The Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems.

The very nature of surface water allows contaminants to migrate into the intake with no protection only dilution. This is the reason for mandatory treatment for all surface water supplies in Illinois. Chicago's offshore intakes are located at a distance that shoreline impacts are not usually considered a factor on water quality. At certain times of the year, however, the potential for contamination exists due to wet-weather flows and river reversals. In addition, the placement of the crib structures may serve to attract waterfowl, gulls and terns that frequent the Great Lakes area, thereby concentrating fecal deposits at the intake and thus compromising the source water quality. Conversely, the shore intakes are highly susceptible to storm water runoff, marinas and shoreline point sources due to the influx of groundwater to the lake.

2021 Regulated Contaminants Detected

Water Quality Test Results

Definitions:	The following tables contain scientific terms and measures, some of which may require explanation.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
na:	not applicable.
mrem:	millirems per year (a measure of radiation absorbed by the body)
ppb:	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm:	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	12/31/2021	1.1	0.8 - 1.3	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Halacetic Acids (HAA5)	2021	19	5.4 - 22.7	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2021	44	22.63 - 53.3	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

2021 Water Quality Data

DATA TABULATED BY CHICAGO DEPARTMENT OF WATER MANAGEMENT
0316000 CHICAGO

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Highest Level Detected: This column represents the highest single sample reading of a contaminant of all the samples collected in 2021.

Range of Detections: This column represents a range of individual sample results, from lowest to highest that were collected during the CCR calendar year.

Date of Sample: If a date appears in this column, the Illinois EPA requires monitoring for this contaminant less than once per year because the concentrations do not frequently change. If no date appears in the column, monitoring for this contaminant was conducted during the Consumer Confidence Report calendar year.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

N/A: Not applicable

DETECTED CONTAMINANTS

Contaminant (unit of measurement) <i>Typical source of Contaminant</i>	MCLG	MCL	Highest Level Detected	Range of Detections	Violation	Date of Sample
Turbidity Data						
Turbidity (NTU/Lowest Monthly %≤0.3 NTU) <i>Soil runoff</i>	N/A	TT(Limit: 95%≤0.3 NTU)	Lowest Monthly %: 100%	100% - 100%		
Turbidity (NTU/Highest Single Measurement) <i>Soil runoff</i>	N/A	TT(Limit 1 NTU)	0.20	N/A		
Inorganic Contaminants						
Barium (ppm) <i>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</i>	2	2	0.0203	0.0200 – 0.0203		
Nitrate (as Nitrogen) (ppm) <i>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</i>	10	10	0.28	0.28 – 0.28		
Total Nitrate & Nitrite (as Nitrogen) (ppm) <i>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</i>	10	10	0.28	0.28 – 0.28		
Total Organic Carbon (TOC)						
TOC	The percentage of TOC removal was measured each month and the system met all TOC removal requirements set by IEPA.					
Unregulated Contaminants						
Sulfate (ppm) <i>Erosion of naturally occurring deposits</i>	N/A	N/A	27.4	26.9 – 27.4		
Sodium (ppm) <i>Erosion of naturally occurring deposits; Used as water softener</i>	N/A	N/A	9.99	9.79 – 9.99		
State Regulated Contaminants						
Fluoride (ppm) <i>Water additive which promotes strong teeth</i>	4	4	0.77	0.65 – 0.77		
Radioactive Contaminants						
Combined Radium (226/228) (pCi/L) <i>Decay of natural and man-made deposits.</i>	0	5	0.95	0.83 – 0.95		02-04-2020
Gross Alpha excluding radon and uranium (pCi/L) <i>Decay of natural and man-made deposits.</i>	0	15	3.1	2.8 – 3.1		02-04-2020

Units of Measurement

ppm: Parts per million, or milligrams per liter

ppb: Parts per billion, or micrograms per liter

NTU: Nephelometric Turbidity Unit, used to measure cloudiness in drinking water

%≤0.3 NTU: Percent of samples less than or equal to 0.3 NTU

pCi/L: Picocuries per liter, used to measure radioactivity

TURBIDITY

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

UNREGULATED CONTAMINANTS

A maximum contaminant level (MCL) for this contaminant has not been established by either state or federal regulations, nor has mandatory health effects language. The purpose for monitoring this contaminant is to assist USEPA in determining the occurrence of unregulated contaminants in drinking water, and whether future regulation is warranted.

FLUORIDE

Fluoride is added to the water supply to help promote strong teeth. The Illinois Department of Public Health recommends an optimal fluoride level of 0.7 mg/L with a range of 0.6 mg/L to 0.8 mg/L.

SODIUM

There is no state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials who have concerns about sodium intake due to dietary precautions. If you are on a sodium-restricted diet, you should consult a physician about the level of sodium in the water.